skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brady, Zarathustra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper focuses on the algebraic theory underlying the study of the complexity and the algorithms for the Constraint Satisfaction Problem (CSP). We unify, simplify, and extend parts of the three approaches that have been developed to study the CSP over finite templates - absorption theory that was used to characterize CSPs solvable by local consistency methods (JACM'14), and Bulatov's and Zhuk's theories that were used for two independent proofs of the CSP Dichotomy Theorem (FOCS'17, JACM'20). As the first contribution we present an elementary theorem about primitive positive definability and use it to obtain the starting points of Bulatov's and Zhuk's proofs as corollaries. As the second contribution we propose and initiate a systematic study of minimal Taylor algebras. This class of algebras is broad enough so that it suffices to verify the CSP Dichotomy Theorem on this class only, but still is unusually well behaved. In particular, many concepts from the three approaches coincide in the class, which is in striking contrast with the general setting. We believe that the theory initiated in this paper will eventually result in a simple and more natural proof of the Dichotomy Theorem that employs a simpler and more efficient algorithm, and will help in attacking complexity questions in other CSP-related problems. 
    more » « less
  2. null (Ed.)